

www.nyfea.com

Nyfea product specification

PRODUCT SPECIFICATION 产品规格书

Customer 客户名称:_		
Product Name品名: _	Super C	ар
PART NO. 型号规格:N	B614S224N-TR	3.3V 0.22F 6.8 × 1.4mm
 lssue Date发布日期: _		

Prepared 制作	Checked 审核	Customer Check客户核准
ChenTT	Zelig	

录 录

1.	适用范围	3
	标准测试条件	
3.	命名方式	. 3
4.	产品性能	3
5.4	示准产品尺寸及外形	. (
6.	则试方法	.6
	主意事项及使用指导	

1. 适用范围

本产品承认书描述了NYFEA公司生产的扣式超级电容器的产品性能指标。

2. 标准测试条件

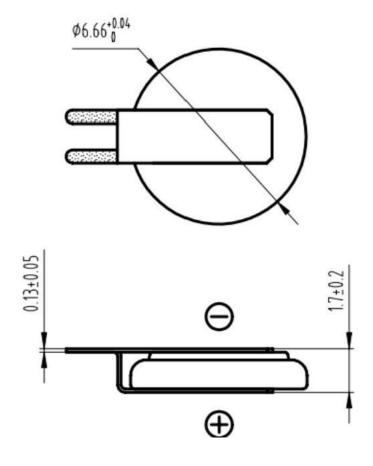
一般情况下,在标准大气压下,温度 15^35 ℃,相对湿度在25%75%条件下进行测试,测试前样品应该在测试温度下放置1h 以上,本规格书的测试条件为标准大气压,温度为 25 ± 1 ℃,相对湿度为 $60\pm15\%$ 。

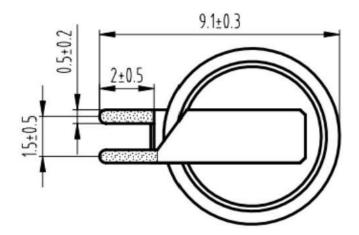
3. 命名方式

NB614S224N-TR 3.3V 0.22F 6.8 × 1.4mm

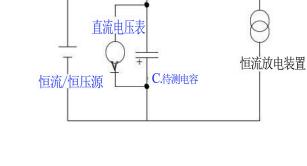
4. 产品性能

项目名称	特性	测试条件		
Item	Perfomance Characteristics	(依据IEC62391—1)		
工作温度范围 Category temperature range	-10°C ~+60°C			
额定工作电压 Rated operating voltage	3. 3V			


标称容量范围 Nominal capacitance range	0. 22F			
容量允许偏差 Permitting capacitance error tolerance	-20%~+80%		依据IEC62391—1要求	
控制容量偏差 Controlled capacitance error	-10%~+20%			
等效串联内阻 ESR	≤200 Ω		1KHz10mA常温测量	
漏电流 Leakage current (0.5h,LC)	≤150 µ A		额定电压,充电30min	
	+60±2℃	+60±2℃下施加额定电压 1000小时后电容器符合规定的限值		
	容量C	容衰≤30%初始值		
耐久性 load life	内 阻 E S R	≪规定值4倍		
	漏电流LC	≤规定值2倍		
	外观	无漏液和机械损伤		
	+25±2℃电容器符合规定的限值			
	容量C	满足初始值±20%		
	内阻ESR	满足规定值		
	漏电流LC	满足规定值		
温度特性 Temperature characteristics	+60±2℃下搁置1h, 电容器符合以下规定的限值。			
	容量C	容衰≤30%初始值		
	内阻ESR	≪规定值		
	漏电流LC	≪规定值		
	-10±2℃下搁置1h, 电容器符合以下规定的限值。			


	rès 目 c		\#- □	1.00% 44 # 151 4	
	容量C	满足:		±20%的范围内 ————————————————————————————————————	
	内阻ESR	<u> </u>		≤规定值4倍	
	漏电流LC	清		满足规定值	
	容量C	容衰≤30%初始值		-10±2℃常温+60±2℃常温 循环次数5次	
高低温循环特性 Temperature cycle	内阻ESR	≤规定值3倍			
Temperature Cycle	漏电流LC	满足规定值			
	外观	无漏	液和损伤		
60±2℃下贮存1000小时后,电容器符合规 贮存寿命特性			电容器符合规定的限值		
Shelf life	容量 C 内阻 E S R 漏电流LC		容衰≤20%初始值 ≤3倍初始值		
			≪规定值		
			无漏液和机械损伤		
	在+25℃下,用恒定电流使电容器在规定电压和半额定电压间循环充放电 (200000次)				
	容量C		初始测试值的±30%		
循环次数 Cycles	内阻ESR		≪3倍初始值		
	漏电流L	C		≪2倍规定值	

5. 标准产品外型尺寸


6. 测试方法

- 6.1 容量测试方法(恒流放电法)
 - 1)将转换开关S 切换到恒流/恒压源,以1mA的电流给

待测电容器恒流充电;

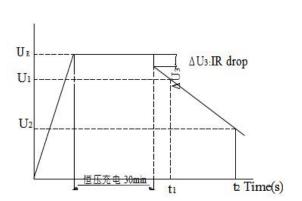
- 2)在待测电容器的电压达到额定电压Ug 后恒压充电30min;
- 3) 在恒压充电30min后,将转换开关S 切换到恒流放电装置以0.1mA 的电流恒流放电;

测量电容器两端电压从放电开始到 U_1 和 U_2 的时间 t_1 和 tz,如图 2 所示,根据下式计算电容器的容量:

S: 转换开关

(<u>A</u>)—— 直流电流表

图1. 容量测试电路


$$C = \frac{I \times (t_2 - t_1)}{U_1 - U_2}$$

其中: C: 容量 (F)

I: 放电电流 (A)

t₁: 放电开始到电压达到 U₁ 的时间 (s)

t2: 放电开始到电压达到 U2 的时间(s)

U1: 测量起始电压(40%额定电压)V

U2: 测量终止电压(80%额定电压)V

图2. 充放电曲线图

6.2 内阻测试方法

6.2.1 直流阻抗计算方法

$$R_{DC} = \frac{U_3}{I}$$

其中: Rpc: 直流阻抗(Ω)

U3: 恒流放电10ms压降 (V)

I: 恒流放电电流(A)

6.2.2 交流阻抗测试方法

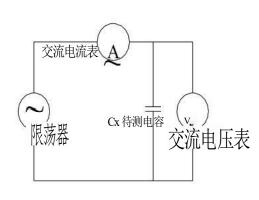


图3. 交流阻抗测试电路图

交流阻抗通过LCR 电桥测量,测量电压的频率为1KHz

超级电容器交流内阻的RAc 按下式计算:

$$R_{AC} = \frac{U}{I}$$

其中: RAc: 交流电阻(Ω) U: 交流电压的有效值(Vr.m.s) I: 交流电流的有效值(A r.m.s)

6.3 漏电流测量

- 1)测试漏电流前待测超级电容器应充分放电, 一般放电1h 以上;
- 2)在电容器两端加额定电压Ug;
- 3) 待超级电容器电压达到额定电压Ug 后,测量30min、12h、24h、

72h 串联保护电阻两端电压Uv;

根据下式计算漏电流:

$$LC = \frac{U_V}{R} \times 10^3 \, mA$$

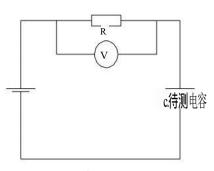


图4. 漏电流测试电路图

NYFEA

其中: LC: 漏电流 (mA)

Uv: 串联电阻两端电压(V)

R: 串联保护电阻, 一般1000Q以下(Q)。

7. 注意事项和使用指导

- 7.1 超级电容器不可使用在如下状态:
- a) 超过工作温度的温度
- b) 超过额定电压的电压
- c) 逆电压或交流电压的加载
- 7.2 周围温度对超级电容器的影响:

超级电容器的使用寿命受使用温度的影响, 一般情况下,使用温度降低10℃,超级电容器的使用寿命会延长2倍,请尽量在低于最高使用温度的低温环境下使用。

超过最高使用温度使用的话,可能会造成特性急剧劣化,破损。 超级电容器的使用温度不仅要确认设备周围温度,内部温度,还要确认设备内发热体(功率晶体管、电阻等)的放射热,纹波电流引起的自行发热温度。此外,还请勿将发热体安装在超级电容器的附近。

- 7.3 请按电容器的正负极标识正确使用。
- 7.4 请避免在以下环境中使用超级电容器:
 - a) 直接溅水、盐水及油的环境、或处于结露状态、充满着气体状的油分或盐分的环境。
 - b) 充满着有害气体(硫化氢、亚硫酸、氯、氨、溴、溴化甲基等)的环境。
 - c) 溅上酸性及碱性溶剂的环境。
 - d) 阳光直射或有粉尘的环境。
 - e)遭受过度的振动及冲击的环境。

NYFEA

- 7.5 在焊接过程中要避免使电容器过热(1.6mm的印刷线路板,焊接时应为260℃,时间不超过5s) 不可使用回流焊。
 - 7.6 不要把电容器进入已溶解的焊锡中。
 - 7.7 只在电容器的导针上粘焊锡。不可让焊接用焊棒接触电容器热缩管。
 - 7.8 安装后,不可强行扭动或倾斜电容器。
 - 7.9超级电容器运输过程中不带电。
 - 7.10 超级电容器在出厂前进行3V电压持续充电10h以上处理。
 - 7.11放置过程中超级电容有休眠现象,电容自身自放电每月下降约0.1 \sim 0.15V,建议短时间充电使用或测试前用1 $^{\sim}$ 10mA电流,3.3V电压持续充电8h 以上激活超级电容器。
 - 7.12 保存要求:
 - 7.12.1.不可存放于相对湿度大于85%或含有有毒气体的场所。应储存在温度-10℃⁵⁰℃、相对湿度小于60%的环境中。
 - 7.12.2避免以下环境中保存超级电容器:
 - a) 直接溅水、盐水及油的环境、或处于结露状态、充满着气体状的油分或盐分的环境。
 - b) 充满着有害气体(硫化氢、亚硫酸、氯、氨、溴、溴化甲基等)的环境。 溅上酸性及碱性溶剂的环境,阳光直射或有粉尘的环境。
 - c) 遭受过度的振动及冲击的环境。
 - 7.13关于废弃不要随意丢弃,遵循法令或地方公共团体等指定的条例,将废弃品交给工业废弃物处理商。